LL-37 induced cystitis and the receptor for advanced glycation end-products (RAGE) pathway.
نویسندگان
چکیده
To elucidate pathways in bladder inflammation, we employed our physiologically relevant LL-37 induced cystitis model. Based on inflammatory studies involving other organ systems implicating the receptor for advanced glycation end-products (RAGE), we first hypothesized that RAGE is critically involved in LL-37 induced cystitis. We further hypothesized a common RAGE ligand - high mobility group box 1 (HMGB1) is up-regulated in bladders challenged with LL-37. Finally, we hypothesized NF-κB dependent inflammatory genes are activated in LL-37 induced cystitis. Testing our first hypothesis, C57Bl/6 mice were challenged with either saline (control) or 320 μM of LL-37 intravesically for 1 hr. After 12 or 24 hours, tissues were examined with immunohistochemistry (IHC) for RAGE, and both mRNA and protein isolation for respective qRT-PCR and Western Blot analysis. Our second hypothesis was tested by employing HMGB1 IHC. Testing our final hypothesis, qRT-PCR was performed investigating five genes: TNFα, IL-6, IL-1β, GM-CSF, COX-2. In control and LL-37 challenged tissues, IHC for RAGE revealed similar qualitative expression. Evaluation with qRT-PCR and Western Blot for RAGE revealed diminished expression at the mRNA and protein level within LL-37 challenged bladders. IHC for HMGB1 revealed a moderate qualitative increase within LL-37 challenged tissues. Finally, with the exception of TNF α, all NF- κB dependent inflammatory genes yielded substantial up-regulation. We have employed our LL-37 induced cystitis model to gain insight towards a possible mechanistic pathway involved in bladder inflammation. This work provides data for future studies involving the inflammatory ligand HMGB1, RAGE, and receptor pathways that activate NF-κB.
منابع مشابه
Receptor for advanced glycation end products involved in circulating endothelial cells release from human coronary endothelial cells induced by C-reactive protein
Objective(s): This study was designed to investigate the effect of receptor for advanced glycation end products (RAGE), S100A12 and C-reactive protein (CRP) on the release of circulating endothelial cells (CECs) from human coronary artery endothelial cells (HCAECs). Materials and Methods: HCAECs were cultured in increasing concentration of CRP (0, 12.5, 25, 50μg/ml) or S100A12 protein (0, 4, 1...
متن کاملAdvanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress
Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alz-heimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressi...
متن کاملAssessment of Oral Glycine and Lysine Therapy on Receptor for Advanced Glycation End Products and Transforming Growth Factor Beta Expression in the Kidney of Streptozotocin-Induced Diabetic Rats in Comparison with Normal Rats
Background & Aims: Today, diabetic nephropathy is considered to be one of the most common causes of end stage renal disease. Uncontrolled hyperglycemia, and consequently, production of advanced glycation end products activate pathways which play key roles in diabetic nephropathy. Among these pathways, high expression of receptor for advanced glycation end products (RAGE) and transforming growth...
متن کاملExpression of the receptor of advanced glycation end-products (RAGE) and membranal location in peripheral blood mononuclear cells (PBMC) in obesity and insulin resistance
Objective(s): The present study aimed to evaluate the receptor of advanced glycation end-products (RAGE), NF-kB, NRF2 gene expression, and RAGE cell distribution in peripheral blood mononuclear cells (PBMC) in subjects with obesity and IR compared with healthy subjects.Materials and Methods: The mRNA expression levels of RAGE, NF-kB, NRF...
متن کاملHeparanase induced by advanced glycation end products (AGEs) promotes macrophage migration involving RAGE and PI3K/AKT pathway
BACKGROUND Advanced glycation end products (AGEs), inflammatory-associated macrophage migration and accumulation are crucial for initiation and progression of diabetic vascular complication. Enzymatic activity of heparanase (HPA) is implicated strongly in dissemination of metastatic tumor cells and cells of the immune system. In addition, HPA enhances the phosphorylation of selected signaling m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in bioscience and biotechnology
دوره 4 8B شماره
صفحات -
تاریخ انتشار 2013